OCT 1 2 2001

0039

552408

0	MR. BELLER: Good afternoon, ladies and
7	gentlemen. I'm Denis Beller. I work at the Harry Reid
8	Center for Environmental Studies at the University of
9	Nevada, Las Vegas. "Foreign Affairs," the world's most
10	influential economic and foreign policy journal printed
11	an essay titled, "The need for Nuclear Power" in
12	January of 2000. Dr. Richard Rhodes, a Pulitzer prize
13	winning historian and journalist was the lead author of
14	that paper. The essay has been entered in the
15	Congressional Record, it has been widely cited in
16	national and international publications, and it is used
17	as a reference for decisions by the Nuclear Regulatory
18	Commission. I am the second author of that paper. I
19	will attach an annotated copy to my written statement
20	for entry in the official record, because it highlights
21	the need for, and worldwide environmental and health
22	benefits of nuclear power, which places the need for
23	these hearings in context with national and global
24	energy needs

1 was recently highlighted by analysis of a report from

The need for additional electricity supply

25

2	the	United	Nations	Dr	Alan	Pasternak	of the
L	LITE	CHILEGA	TYALIONS.	171.	Δ	e asicilian	. OH LINE

- 3 University of California correlated the U.N.'s human
- 4 development index with per capita electricity use for
- 5 95 percent of the world's population. A low value of
- 6 this index which is found for most of the population is
- 7 associated with poor human conditions. Illiteracy,
- 8 poverty, poor health, and early death.
- 9 His correlation shows that human health and
- 10 well being depend on electricity, and that the current
- 11 alternative is worldwide suffering. For most of the
- 12 people in the world, with minimal access to
- 13 electricity, the index increases rapidly with small
- 14 increases of electricity supply. Yet, the average
- 15 citizen of these nations can expect to die 10 to 25
- 16 years earlier than you and I. Thus, the global lack of
- 17 electricity means billions of people die decades before
- 18 they should.
- We can conclude from Dr. Pasternak's analysis
- 20 that poverty is thousands of times more dangerous than
- 21 explosions from natural gas, spills of oil, emissions
- 22 from coal plants, and nuclear waste.
- 23 Most practical people now understand that the
- 24 less fortunate peoples of the world must and will

25 increase their electricity usage. The suppliers of

552408

- 1 that energy and their governments will determine its
- 2 impact on the economy and the environment. During the
- 3 last decade, under deregulation, the U.S. nuclear
- 4 industry has increasingly demonstrated that it is the
- 5 cleanest, safest and most environmental major source of
- 6 electricity. It is also affordable, reliable, and
- 7 sustainable.
- 8 These six attributes, clean, affordable,
- 9 reliable, environmental, safe, and sustainable, make up
- 10 the acronym, CARESS. Because these attributes
- 11 characterize today's U.S. nuclear power industry,
- 12 national leaders, the national press, Wall Street, and
- 13 business leaders widely recognize that we are in the
- 14 midst of a nuclear renaissance. That is why Vice
- 15 President Dick Cheney's energy studies group chose to
- 16 CARESS nuclear energy in its recent report.
- 17 Recent publicity in the national press also
- 18 tells us about the U.S. industry's plans for the
- 19 additional new capacity. First, the operating
- 20 lifetimes of reactors are being extended, taking
- 21 existing U.S. nuclear power beyond the middle of this

- 22 century. In addition, most nuclear reactors will
- 23 increase capacity equivalent to building 10 new nuclear
- 24 power plants. These two actions alone will increase
- 25 the generation of used nuclear fuel from existing0042
- 1 reactors by more than 50 percent.
- 2 The highly consolidated, privatized and
- 3 deregulated nuclear power industry is already making
- 4 plans to begin construction beginning in about 2005, to
- 5 add another 50,000 megawatts of new capacity at
- 6 existing power plants by 2020 and to build even more
- 7 through at least 2050. With 60-year lifetimes, the
- 8 newest of these reactors will still be operating and
- 9 generating used nuclear fuel more than 100 years from
- 10 today.
- But who will design, build and operate the
- 12 new generation of nuclear power plants that we need
- 13 today? Recent reports such as in "Business Week," and
- 14 the "Christian Science Monitor," have detailed a severe
- 15 shortage of college graduates for the existing nuclear
- 16 power industry, because of a precipitous decline in the
- 17 infrastructure for educating nuclear scientists and
- 18 engineers. A year ago, undergraduate and graduate

4.0							. 1	1 .
19	nuclear	engine	erino	student	populations	were	the	lowest
1/	nacicai	CHEIN	011115	Studelli	populations	*** ***	uic	10 11 050

- 20 in more than three decades. We also need new nuclear
- 21 scientists, engineers and facilities for monitoring the
- 22 activities of other nations, and terrorist
- 23 organizations, for stopping the proliferation of
- 24 nuclear weapons, for conducting nuclear R&D and for
- 25 industrial applications.

- 1 In addition to this infrastructure challenge
- 2 for the next two decades, the emerging global nuclear
- 3 renaissance presents us with the challenge of greatly
- 4 increased generation of used nuclear fuel. The result
- 5 of the renaissance that I described without a new
- 6 management philosophy is in excess of 120,000 tons of
- 7 used nuclear fuel by 2030 in the U.S. alone. And
- 8 millions of tons globally by the middle of this
- 9 century.
- But students, faculty and research scientists
- 11 at the University of Nevada Las Vegas are already
- 12 investigating a new technology and a different
- 13 philosophy for management of this valuable material.
- 14 With the support of Senator Harry Reid to provide
- 15 funding from the U.S. Department of Energy, UNLV has

begun research on accelerator-driven transmutation, 552408

- 17 which is a process of causing additional nuclear
- 18 reactions in long-lived radioactive materials to turn
- 19 them into short-lived or even nonradioactive isotopes.
- The three topics that I discussed today, the
- 21 need for nuclear power, the need for revitalizing our
- 22 national nuclear infrastructure, and the need for a
- 23 national management capability for nuclear waste that
- 24 will be created during the nuclear renaissance offered
- 25 the state of Nevada a unique opportunity. We must note

- 1 that a national repository for high-level radioactive
- 2 waste is a key element of that management capability
- 3 for any nuclear future, including nuclear closeout.
- 4 MODERATOR BROWN: About a minute left.
- 5 MR. BELLER: Southern Nevada, led by the
- 6 University of Las Vegas, can take this opportunity to
- 7 become the world leader in ensuring the safe,
- 8 economical and environmental management of used nuclear
- 9 fuel. Nevada can create a new national nuclear science
- 10 center, some might call it a national center of
- 11 excellence for repository science, for recycling used
- 12 nuclear fuel, for reusing this valuable resource, and

13	for reducing	the amount	of waste	that	needs	disposa	1.
10	101 TOUGUETING	the annount	or waste	uiui	110003	arsposa	1,

- 14 as well as the radiotoxicity of that waste. We can
- 15 create the science and technology necessary for
- 16 recycling uranium, higher actinides like neptunium and
- 17 plutonium and other radioisotopes. We can reuse rather
- 18 than discard the transuranium isotopes by extracting
- 19 electricity from the fuels. We can use other isotopes
- 20 to conduct nuclear medical research in Nevada
- 21 universities and to diagnose and treat diseases like
- 22 osteoporosis and cancer in Nevada hospitals, and we can
- 23 use other isotopes for an ever-expanding array of
- 24 industrial radiation applications. These applications
- 25 include manufacturing, oil and gas exploration,

- 1 irradiation to sterilize hundreds of consumer products
- 2 and most medical equipment, and irradiation of food as
- 3 well as livestock feed to eliminate pathogens like
- 4 Listeria, hoof and mouth, and E. Coli.
- 5 Simultaneously with this recycling and reuse
- 6 of nuclear materials, we can reduce the toxicity and
- 7 volume of the waste, as well as quantities of materials
- 8 that could be used for proliferation of nuclear weapons
- 9 centuries or millennia from now.

- 10 Reduce, reuse, recycle. In conclusion, the
- 11 citizens of Nevada are in a position to take the
- 12 fullest advantage of this opportunity to create a
- 13 national center of excellence for management of this
- 14 material to reduce its legacy for our descendants and
- 15 to reduce its impact on the environment, all funded by
- 16 the federal government.